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Abstract 

In this paper we will determine the complete set of generalized Hamming weights of a 
special class of algebraic geometric codes arising from hyperelliptic curves. @ 1998 Elsevier 
Science B.V. 

1991 Math. Subj. Class.: 94B27, 14H45 

1. Introduction 

In this section the codes are introduced that we will study and define what we 

mean by generalized Hamming weights. Moreover,  we will list some known results 

concerning these subjects that are relevant for this paper. 

In Section 2 we will prove some results on hyperelliptic curves that we need in 

order to determine the complete set o f  generalized Hamming weights o f  the codes in 

Section 3. To show that good examples of  such codes exist, in Section 4 we will 

construct a class of  hyperelliptic curves that meet the Weil  bound and have a maximal  

number of  hyperelliptic points. 

1.1. Generalized Hamming weights 

For an arbitrary code D we define the support as 

supp(D) = {i I there is a d E D with d i ¢  0}. 
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Let C be a linear code with parameters [n,k,d]. For any r, 1 < r < k we define the rth 
generalized Hamming weight as 

dr = min{#supp(D) ]D r-dimensional subcode of C}, 

where the cardinality of  a set S is denoted by #S. 

Since the definition of generalized Hamming weights by Wei in [7], many papers 
have appeared that investigate these parameters for different classes of  codes. 

1.2. Algebraic .qeometric codes 

Let Y" be an absolutely irreducible smooth curve over ~q of genus 9. For a set 
= {PI . . . . .  Po} of rational points of Y" and a rational divisor G of Y" with deg(G)<  n 

and supp(G)N ~ =  (3, we define the algebraic geometric code C(~ ,  G) as the image 
of the map 

~b : L(G)--~ F~, f~-*(f(P1) ...... f(P,)). 

The code C(~ ,  G) is linear with parameters [n, k, d] satisfying k = l(G) >_ d e g ( G ) + l - 9  
and d _> n - deg(G). 

In papers [4, 9] the authors study the generalized Hamming weights of algebraic 
geometric codes. Munuera proved the following for algebraic geometric codes C(~ ,  G): 

dr(C)=n - max {deg(D) ' O<D< Z P' I (G- D)>-r} 

For an extensive treatment of  algebraic geometric codes (excluding generalized 
Hamming weights), see [5,6]. 

1.3. Hyperelliptic codes 

An absolutely irreducible smooth curve Y" is hyperelliptic if and only if its genus is 
at least two and there exists a morphism of degree two from X to the projective line. 
.T allows a unique involution (conjugation), the hyperelliptic involution, denoted by a. 
The fixed points of ~ are called hyperelliptic points. For rational points P, both divisors 
of the form P+c~(P) and sets of  the form {P, a(P)} are called hyperelliptic (conjugated) 
pairs. In this paper P~  is a fixed hyperelliptic point and ~ = {Ht,//2 . . . . .  Hh} is the 
set of all (not necessarily Fq-rational) hyperelliptic points on Y" different from P,~. In 

g-,2q+l 
the case q odd we have that h = 2 9 +  1 and z_,i=t H i ~ ( 2 9 +  I )P~.  In the case q even 
we have h _< 9. As a general reference on hyperelliptic curves we refer the reader to 
[3] or [5]. 

In this paper we consider algebraic geometric codes C(~ ,  G) arising from hyper- 
elliptic curves, with the properties that for any rational point P E ~ we have that 
a ( P ) c . ~ ,  and G is a hyperelliptic divisor (which means G~2lP~ for some l) of 
degree deg(G)<n .  From Clifford's theorem and the Riemann-Roch theorem we find 
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that the dimension of these codes is k =  l +  1 if l_< g -  1 and k = 2 l +  1 - g  if l > g -  I. 

Remark that this class of codes includes the most studied form of algebraic geometric 
code: codes C(~,  G) with G = mP~ and ~ all rational points on Y except P-,~. 

Using the fact that for a hyperelliptic curve the gonality sequence is known, Munuera 
proved (see [4]) 

{ d r > n - d e g G + 2 ( r -  1) if l < r < m i n { k , g } ,  

dr : n - k  + r if r > g .  

Munuera could even prove equality in the first equation if .~ contains enough conju- 
gated pairs. In this paper we will prove a converse to Munuera's results which allows 
us to determine all generalized Hamming weights. This also generalizes [8], in which 

Xing determines the minimum distance of these codes in the case l > g -  1 and q odd. 
For l = g  we will show that Xing's result is not exact, and we will correct it. Our 

approach differs completely from Xing's proof. 

2. Results on divisors of  hyperelliptic curves 

In this section we will prove the facts on hyperelliptic curves that we will need 
in the next section to prove the main result. The main ingredient is the fact that for 

a hyperelliptic curve we have the unique reduction property (URP) (see [2]). Let D 
be an effective divisor. By replacing all conjugated pairs in D by 2P~ we can write 

D ~ D  ~ + mP~: with D' such that a ( P ) ~ s u p p ( D  ~) if PEsupp(D~). We say that D 
reduces to D' and call D t semi-reduced. From the Riemann-Roch theorem it follows 

that every effective divisor can be reduced uniquely to a semi-reduced divisor of degree 

_< g; such divisors are called reduced divisors. Thus, the URP yields that every effective 
divisor D is equivalent to a unique divisor of the form D t + cP~, with D t an effective 

divisor of degree at most g with neither conjugated pairs nor P~ in supp(D ~) (in [2] 

Cantor describes an algorithm that reduces divisors). 

Now we prove some useful lemmas. The first is a generalization of a lemma proved 

by the author in [I]. It also shows that the reduction of a divisor is unique. 

Lemma 2.1. Let  : f  be a hyperelliptic curve o f  genus g. Let  D be an effective divisor 

o f  the j o r m  

D : T  + s P ~  

o f  degree t + s with T a semi-reduced divisor o f  degree t. Then we have 

J" L~J + 1 zf2t + s _ < 2 g -  z, 
I ( D ) =  

t + s + l - 9  i f 2 t + s > 2 g - 2 .  

Proof. Since the dimension of the vectorspace L(D) does not change if we extend the 
ground field Fq, we will prove the lemma in the case of the algebraically closed field 
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gq. In this case we can write T ~ P I  + . . .  + P t  with P i ¢ P ~  and P i T L f ( P j )  for i ¢ j .  
Suppose P / ~  Pj for i g: j .  

We prove the case s even, the case s odd being quite similar. Let D '  = PI +" ' • + P t  + 

Pt-1 +o(Pt+l  ) + ' "  '+Pt+s/2 +~7(Pt+s/2) "~D. Set D" = Pi +a(P1 ) + '  • "+Pt+cr(Pt)±Pt+l + 

a ( P , - 1 ) + . . "  +P,+s/2 +a(Pt+,.,2). Let J~ for i =  1 . . . . .  t + s / 2  be such that ( J~)=  2P~c -  
Pi - a(Pi). First suppose that 2t + s  _< 29 - 2. Then L(D' )  C L ( D ' )  = ( l , f l  . . . . .  ft+,/2). 
Since (fM . . . . .  ft) A L ( D ' ) =  {0} we find l ( O ) =  l i D ' ) < s / 2  + 1. The equality follows 
from I(D) >_ l ( sP~)  = s / 2  + 1. 

Now let 2 t + s > 2 g - 2 .  Then L ( D ' ) C  L ( D " ) =  (1, f l  . . . . .  ft+{,/2), hl . . . . .  ht.{~/2)-u) for 
some rational functions hi . . . . .  ht+(s/a)-g. Again we have L ( D ' ) A  (fl . . . . .  ft} = {0}, so 
I ( D ) :  I(D')<_ t + s + l  - 9 .  From the Riemann-Roch theorem we have that I(D)>_ t + 

s + 1 - g  which completes the proof. 

If  some of  the P/ coincide, say P1 = P2 . . . . .  p~, then the proof proceeds as above 

but with ( f l )  = 2P~ - PI - o(P1 ) and f2 = . f(,  f3  = f l  3 . . . . .  f~ = fiL [] 

Lemma 2.2. Let  Wi E ~ be such that ~ r  Wi',~rP~ with every Wi appearing at i=l 
most  twice in the sum. Then either eveo, W~ appears exactly  twice in the sum, 

or r = 2 g  + 1 and every Wi appears exactly  once in the sum (in this case {Wi ] 
i = 1 . . . . .  2g + 1 } = Jr ) .  The last case cannot occur i f  q is even. 

Proof.  Replacing all the points that appear twice in the sum ~ W/ by 2P~: (reduction) 

yields 

wi, + . . .  + wi, ~ lP,~, 

for some l, 0 <  l < 2 g + l  i f q  is odd, and 0<_ l<_g i f q  is even. First suppose l<_g. By 

the URP this is impossible unless l = 0, i.e. every point appears twice in the original 

s u m .  

Now suppose l > g + 1. Then q is odd and as stated in the previous section we have 

2g+l 

/q~ ~ ( 2 g  + 1)P~, 

so we find 

2g+l 

H j  - Wfi . . . . .  Wi, ~ ( 2 g  + 1 - I ) P ~ .  

j = l  

Now 2g + 1 - l_< g. Using the URP this is impossible, unless l = 2g + 1, i.e. every 

point appears exactly once in the original sum. [] 

The following lemma gives a lower bound on the degree o f  a divisor that reduces 
to a sum of  hyperelliptic points and that is itself not a sum of hyperelliptic points. 
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Lemma 2.3. Let  E be an effective divisor o f  degree e with P E supp(E)  and a (P) f {  

supp(E)  Jor some point P. Suppose Jor hyperelliptic points H1 . . . . .  H~,, 0 < u <_ g we 

have 

E " ~ H t  + . . .  + H,, + ( e  - u ) P ~ .  

Then e > 2g + 1 -  u. 

ProoL Replacing all hyperelliptic pairs in the support o f  E by 2P~: yields a divisor 

E ~ of  degree e'  < e with E ~ E '  + (e - e~)P~.,~. The property o f  E that there is a point 

P E supp(E)  with a ( P ) ~ s u p p ( E )  also holds for E ~. We can write 

E ' ~ H 1  + . ' .  ~ Hu + (e' - u)P~. (1) 

First note that e ' >  g. Indeed, if  e '  were smaller than g the URP would imply that 

there is a divisor A ~ ( l u  - e~l)P~ such that either E' + A = - H I  + . . .  + H,  or U =  

HI + - .. + H,  + A. This is impossible since not all conjugates of  points in supp(E ' )  

are in supp(U) .  Hence e'_> g. 

Now suppose that e ~ + u < 2g - 2. From the proof  of  Lemma 2.1 we find that there 

is a divisor A ~ ( e  ~ -  u)P~ such that E '  = H I  + . ' .  + H ,  + A ,  which is again impossible 

:since not all conjugates of  points in s u p p ( U )  are in supp(E') .  

So we can assume e ' +  u > 2 g -  1. Lemma 2.1 gives l ( U ) = e ~ +  1 - g .  Suppose 

e < 2g - u, so e '  <_ 2g - u. Then l((e ~ - u)P~ ) > l ((2e t - 2g )P~  ) = e I - g + 1 (Clifford's 

lheorem). This shows that the number o f  effective divisors that are equivalent to ( e ' -  

u)P~ is at least the number of  effective divisors that are equivalent to E ' .  Together 

vcith Eq. (1) this implies that these numbers must be equal and we again find E '  = H1 + 

• .. + H,, + A for some effective divisor A ~ ( e  ~ - u)P~,  which is impossible for the 

same reason as above. Hence, e > 2g + 1 - u and the proof  is finished. 

The next lemma gives bounds on the generalized Hamming weights g for 1 < r < g- 

Lemma 2.4. Let  ~ be a set o['n distinct rational points on a hyperelliptic curve S o f  

genus y. Let  G~2lPo¢ with 2l <n. Let 1 < r < g. Then the rth generalized Hamming 

weight is dr = n - 2l + 2(r - 1 ) + 6 f o r  some 6, O < 6 < g - r + l. 

Proof.  The lower bound 6 > 0 was proved by Munuera in [4]. The upper bound follows 

from the generalized Singleton bound (see [7]): d,. < n - k  + r .  We distinguish between 

two cases. First suppose I > g. Then k = 2 1  + 1 - g  and we find dr = n  - 2 l  + 2 ( r -  

I ) -- (5 <_ n - 2l  - 1 + g + r from which the lemma follows. 

In the case 1 < g -  1 we have k = l +  1 and we find dr = n - 2 l + 2 ( r -  1 )+~ < n - l -  1 +r 

and the lemma also follows immediately.  [] 

L emma 2.5. Let  S be a divisor with d e g ( S ) <  g + r - 2  and l (S)~-r ,  with S ~ F + m P ~ c  

for  some semi-reduced divisor F o f  degree f . Then 2 f + m < 2g - 2 and m-~ 2r - 1 

or 2r - 2. 
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Proof .  First suppose 2 f  + m > 2 g -  2. Then Lemma  2.1 yields r = I(S) = I (F  + mP~ ) = 

f + m + 1 - g _< r - 1 which is a contradiction. 

Hence, 2 f  + m < 2g - 2 and L e mma  2.1 gives r = l (S)  = l (F  + mP~o) = [m/2] + 1 

which proves the lemma. [] 

3. The generalized Hamming weights 

In this section we state and prove the main  result. 

Let W I , . . . ,  W~., E Yf be [Fq-rational hyperell iptic points and let Pi, a(P, ), i = 1 . . . .  ,7z 

be pairs o f  distinct conjugated Yq-rational points o f  f .  Then we have the fol lowing 

proposition. 

Proposition 3.1. Let  ~ = {Wj . . . . .  Wo) ,PI ,a (PI ) , . . . ,P~ ,  a(P=)} and G,,~2IP~o with 

2 l < n = 2 ~ t  + ~o. Suppose the code C( ,~ ,G)  has rth generalized Hamming  weight 

dr = n - 2l + 2 ( r - 1 )  + b f o r  some `5>>_0. Then re> l - r + l - `5 in any' o f  the Jbllowing 

cases: 

1. c 5 + c o < 2 g + 2 ;  

2. l < _ r + g - 1 .  

Proof .  Suppose dr = n - 2 l  + 2(r  - 1 ) ÷ `5. Then,  after re indexing the points o f  ~ ,  there 

is a divisor 

D =  W1 + . . ,  + W m  + P~ + a ( P , ) +  . . .  + p~ + a ( P s ) + O l  + "'" + Qt 

with Wi,Pi, O i E ~ ,  a ( O i ) ~ O j  for all i , j ,  and d e g ( D ) = 2 l -  2r  + 2 -  `5, such that 

I ( G - D )  = r. From Lemma  2.4 we find `5 < g - r +  1. I f  c5 = g - r +  1 the proof  is finished, 

since in this case 27t + 2g + 1 > 2n  + co = n > 2l  implies  that ~ _> l - g = l - r + 1 - 0. 

Hence,  from now on we can assume ,5 _< g -  r. 

Since deg(G - D )  = 2(r  - 1 ) + `5 < g + r - 2 we can apply Lemma 2.5 to the divisor 

G - D to find that G ~ D  + 2(r  - 1 )P~  + F for some effective divisor F o f  degree `5. 

Hence, we can write 

(21 - 2 r  + 2 ) P x  ~ W1 + . . .  + Wm ÷ P1 + o'(P1 ) + " "  + Ps + a(Ps) 

+ 0 1  + " "  + Ot + F. (2) 

Since ~ contains  all conjugates of  its points we have ~ > s  + t. We  want  to give a 

lower bound  on s + t. 

Compar ing  Eq. (2)  with its conjugate yields 

QI + " "  + Qt + F ~ a ( Q 1 )  + . . .  + a(Q,)  + a(F) .  

Since the reduced divisor of  Q1 + '  • • + Qt + F  must  also be equivalent  to its conjugate 

we have by the URP 

Q~ + " "  + Qt + F ~ H q  + . . .  + Hiu + (t +`5 - u)P~o, 
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with 0 < u < g and H~j E ~,~. Substitution in Eq. (2) yields 

W1 ÷ . . .  + Wm +Hi ,  ÷ "'" + I t i , ~ ( m  .÷ u)P~.  

Since the Wi are pairwise distinct and the Hi/ are pairwise distinct (reduction), we 

can apply Lemma 2.2. We are left with two cases. The first case is the case in which 

{WI, . . . ,Wm} = {//,~ . . . . .  Hi,}. In the second case m + u = 2 g  + 1 and {Wj . . . . .  Win} U 

{~1, ..,H~,,} = ~  
1. Suppose {W1 . . . . .  Win}= {Hq . . . . .  ~ , } .  Then m = u  and since t ÷ , ~ > u  we find, 

comparing degrees in Eq. (2), that 21 - 2r + 2 = m ÷ 2s + t ÷ 6 _< 2s + 2t + 2~, and so 

7c > s ÷ t > l - r ÷ 1 - ~. This finishes the proof in this case. 

2. Suppose m 4- u = 2g + 1 and { Wj . . . .  , Wm } U {Hi 1 . . . . .  Hi, } = ~(g. We again distin- 

guish between two cases. 

(a) Suppose m + u = 2 g  ÷ 1 and t > 0 .  Lemma 2.3 implies that t + 6 > 2g + 1 - u. 

We again find that t ÷ 6 _> m, and the result follows as in case 1. 

(b) S u p p o s e m + u = 2 g + l  a n d t = 0 .  N o w 6 _ > u a n d m _ < c g .  If we note that m + 6  

is even by comparing degrees in Eq. (2) for t = 0, this yields 6 + o)_> 2g + 2. This 

possibility cannot occur if any of the two conditions of the proposition is satisfied. 

Indeed, the contradiction is immediate in the case 6 ÷ ¢o<2g ÷ 2. For the other case, 

assume that l_< r +  g -  1. Then the degree of the equivalent divisors in Eq. (2) is at 

most 2g. This is only possible if m = u which contradicts with m ÷ u = 2g ÷ 1. [] 

Remark  3.2. The first condition in Proposition 3.1 is always satisfied if q is even. 

Indeed, if q is even, then co _< g. From Lemma 2.4 we find that ,5 _< g, so that 6,i,o3 < 2~t. 

We can use Proposition 3.1 to prove the following converse of a proposition by 

Munuera [4]. 

Proposition 3.3. Let  ~ = { Wl . . . . .  W,,, P1, o ' (P l  ) . . . . .  P~, a(P~)} and G ~ 21P~ with 

2 1 < n = 2 7 r ÷ c o .  Let  1 < r < g. Then the code C ( ~ ,  G) has rth generalized Hamming 

weight d,., with 

d r = n -  21+ 2 ( r -  1 ) < = > = _ l - r + l .  

Proof. Suppose ~ _> I - r + l and let 

D = P t  + a ( P i ) +  . . .  + P ~ - r - l  + a(P t - r -1 ) .  

Then I(G - D)  = l(2(r  - 1 )P~ ) : r and we find dr _< n - deg(D) = n - 2l ÷ 2(r - 1). 

Equality follows from Lemma 2.4. 

Now suppose dr = n - 2l + 2(r - 1). Then Proposition 3.1 implies rr > l - r + 1 (note 

that o9_<2g÷ 1). [] 

In the case where ~r > l Proposition 3.3 determines all generalized Hamming weights. 

We will now determine the generalized Hamming weights in the general case. 
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Theorem 3.4. Let  ~ =  {W1 . . . . .  W,, ,Pt,cr(P1) . . . . .  P~,~(P~))  and G ~ 2 I P ~  with 21 

< n  = 2~ + co. Le t  A --- m a x { / -  7r, 0}. Then the code C(;~, G) has generalized Ham- 

ming weights 

Here k = l + l i f  l < g - 1 and k -- 2l + l - g i f  l >_ g. 

n - 2 1 + 2 ( r - 1 ) + m i n { A - r + l , 2 9 + 2 - c o )  

n - 2 l + r - l + A  

n - 2 l + 2 ( r -  1) 

n - k + r  

t f  1 < r <  m i n { l  - g , A } ,  

i f l - g + l < r < A ,  

i f  A +  l <_r<g,  

i f  g +  l < r < k .  

Proof.  The case r _> A + 1 follows from Proposition 3.3 for r _< g and from the results 

of  Munuera [4] for r > g. From now on we can assume r <_ A, and 1 _> ~. 

We will first prove the lower bounds of  the theorem. Suppose r <  l - g. Take 

3 <  m i n ( A - r + l , 2 g + 2 - c o } .  Then ~z< l - r + 1 - 6  and 6 + c o < 2 g + 2 .  Proposition 3.1 im- 

plies that dr ¢ n - 2 / + 2 ( r -  1 )+6.  Hence, dr _> n - 2 l + 2 ( r -  1 )+min{A - r +  l, 2 g + 2 - c o } .  

Now suppose r _~ 1 - g + 1. In this case take ~ < A - r + 1, and again Proposition 3.1 

implies that d r C n - 2 l + 2 ( r - 1 ) + 6 ,  so d r _ > n - 2 l + r -  I + A .  

To prove equality, first note that n : 2zE + co = 2 l -  2A + c o > 2 /  and so co >2A.  We 

distinguish between two cases. We first show that d,. < n - 2 l  + r -  1 + A. Since oJ > A 

we can write 

G"~P1 + ~7(P1) + . . .  + P I - J  + a ( P l - ~ )  + 2Wl + . . .  + 2W~, 

and define the divisor 

D = P I  + a ( P t )  + "'" + P l -3  + a(P~-A) + WI + . . .  + W~_,.+I, 

with Pi, a(Pi),  14~ E ~ .  Now l ( G - D ) > _ / ( 2  WA-r+2 + ' ' "  + 2  W3 ) =  r and we find dr _< n -  

d e g ( D ) = n - 2 l + r -  I + A .  

Now, for r < l - g ,  we show d r < n - 2 1 + 2 r + 2 g - c o .  Note that 2 A < c 0 < 2 g + l  

and so re= l - A > l - g - 1. Hence, we can write 

G ~ H I  + . . . + H2~j+I + P I  + a(Pi ) + " " + Pt-~l-l + a(Pl-~ I ) + P~,  

and define 

D =  WI + . "  + W~.~ + P1 + a (P l )  + . . .  +P~- , - -~  + a(P / - r -g ) .  

Again we find that I ( G -  D ) > / ( ( 2 r -  2 ) P ~ ) =  r and the proof  is complete. [] 

Setting r = 1 in Theorem 3.4 gives the minimum distance of  the codes. 

Coro l la ry  3.5. The code C = C ( ~ ,  G) as in Theorem 3.4 has minimum distance 

d =  { n - 2 l + A  i f l < _ g ,  

n - 2 / + m i n { A , 2 g + 2 - c o }  i f l > _ g + l .  
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In the case l---g, Corollary 3.5 differs from the result by Xing in [8]. Going through 
a specific example yields that Corollary 3.5 gives the correct value for the minimum 
distance. Indeed, take a hyperelliptic curve of genus g over a field ~:q that has 2g + 2 
U:q-rational hyperelliptic points. Take A --- l = g and co = 2g + 1. Then the resulting code 
is a Reed Solomon code with parameters [2g + 1,g + 1,g + 1], whereas Xing's result 
would yield d = 2. 

Using the relation between the generalized Hamming weights of  a code and its dual 
code [7, Theorem 3], we can in particular determine the minimum distance of the dual 
code of C(~ ,  G). 

Corollary 3.6. Let C = C ( ~ ,  G) be defined as in Theorem 3.4. Then the minimum 

distance o f  the dual code is 

2 i f  A < l  and l < g - 1 ,  

d ± :  / + 2  i f A : l a n d l < 9 - 1 ,  

2 / - 2 g + 2  i l l > 9 .  

4. Examples: a class of  maximal hyperelliptic curves 

In order to construct long codes of the type that we are considering in this paper, 
we need hyperelliptic curves with both many U:q-rational points and many hyperelliptic 
points. This seems contradictive, and it is so if the genus of the curve is small compared 
with the size of the ground field. In this section we will give examples of  curves that 
attain the Weil bound and have the maximal possible number of hyperelliptic points. 

Let q be odd. Then a hyperelliptic curve f of genus g has a (singular) plane model 
of  the form y 2 =  f ( x ) ,  with f a square-free polynomial of  degree 2g + 1 or 2g + 2. 
The finite hyperelliptic points of Y" are in one-one correspondence with the zeros of 
f ( x ) .  If  f has degree 2g + 1, Y" also has an infinite hyperelliptic point. For N, the 
number of 7q-rational points on f ,  we have two well-known bounds: 

N < ~" 2q + 2 trivial bound, 

- L q + l + 2 g v / ~  Weilbound. 

If  g > (q  + 1 )/2x/~, the trivial bound is stronger that the Weil bound. The follow- 
ing proposition establishes equality in the Well bound if the genus is just below 

(q + 1)/'2v@ 

Proposition 4.1. Let  g >>- 2 such that p = 29 + 1 is" a prime power. Set  q = p2. Let  N 

be the number o f  g:q-rational points on the hyperelliptic curve f with plane model 

y2 = x  p +x .  

Then 35 has genus 9, contains 2(t + 2 ~:q-rational hyperelliptic points and N = q + 1 + 

29v . 



162 M.A. de Boer~Journal of Pure and Applied Aloebra 123 (1998) 153 163 

Proof. Let :~ be a primitive element in Fq. Then (x p + x)  splits as 

2#j-- 1 
(X p Jr-X)=X H (X -- 3((P+1)( i -1"2)) .  

i=0 

Hence, J" has 2g + 1 finite hyperelliptic points. The infinite point brings the total 

number to 29 + 2. 

Let f ( x ) = x  p + x and [3E Fq. Then f ( f i ) = T r ( f l ) E  Fp, where Tr denotes the trace 

function from Fq to Pp. Since Fp consists of  the set of  p + 1 powers o f  elements in Fq 

we find that f ( f l )  is either 0 or a square in Fq. The zeros of  f ( x )  correspond to the 

p +  l hyperelliptic points, and the x E ~:q for which f ( x )  is a square correspond to pairs 

of  conjugated points. This gives a total number of  points of  N = p + 1 + 2(q - p )  = 

q + l + ( q - p ) = q + l + ( p - 1 ) p = q + l + 2 g p = q + l + 2 g x /  4. [] 

Remark  4.2. The class of  curves given in Proposition 4.1 is a subclass of  a more 

general class of  maximal curves that also includes the Hennit ian curves. These can be 

found in Example V1.4.2. o f  [5]. 

To end this section we will give the parameters of  some codes that arise from this 

construction and that have a minimum distance that exceeds the Goppa lower bound. 

From Proposition 3.3, which shows that in this case we have rr_< l -  1, we see that 

this can only occur for comparatively small minimum distances. Indeed, d = n - 2l + 

min{A, 2 g + 2 - 0 ) }  = 2 r ~ + c o - 2 I + m i n { A ,  2 , q + 2 -  w} < 2 1 - 2 + o g - 2 1 + 2 g + 2 - w  = 29. 

Example. Codes with the parameters shown in Table 1 can be obtained from the curves 

of  Proposition 4.1. 

Table 1 

Field Genus Example of code 

~-25 
?49 

Fl21 

2 [45, 41,4] 
3 [91,86,4] 
3 [91, 84, 6] 
4 [151,147,4] 
4 [152, 145,6] 
4 [153, 143,8] 
5 [229,224, 4] 
5 [229,222, 6] 
5 [229,220, 7] 
5 [231,220, 8] 
5 [231,218, 10] 
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